Calculates the standard errors of a given statistic using parametric formulas
se_param(Xk, dif = "simple", comparisons = "all.vs.all", ...)
list object where each position contains a vector of observations of algorithm k on a given problem instance.
name of the difference for which the SEs are desired. Accepts "perc" (for percent differences) or "simple" (for simple differences)
standard errors to be calculated. Accepts "all.vs.first"
(in which cases the first object in algorithms
is considered to be
the reference algorithm) or "all.vs.all" (if there is no reference
and all pairwise SEs are desired).
other parameters (used only for compatibility with calls to
se_boot()
, unused in this function)
Data frame containing, for each pair of interest, the estimated difference (column "Phi") and the sample standard error (column "SE")
E.C. Fieller: Some problems in interval estimation. Journal of the Royal Statistical Society. Series B (Methodological) 16(2), 175–185 (1954)
V. Franz: Ratios: A short guide to confidence limits and proper use (2007). https://arxiv.org/pdf/0710.2024v1.pdf
D.C. Montgomery, C.G. Runger: Applied Statistics and Probability for Engineers, 6th ed. Wiley (2013)
F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.
# three vectors of normally distributed observations
set.seed(1234)
Xk <- list(rnorm(10, 5, 1), # mean = 5, sd = 1,
rnorm(20, 10, 2), # mean = 10, sd = 2,
rnorm(20, 15, 5)) # mean = 15, sd = 3
se_param(Xk, dif = "simple", comparisons = "all.vs.all")
#> Alg1 Alg2 N1 N2 Phi SE r ropt
#> 1 1 2 10 20 -4.877040 0.5029276 0.5 0.5678141
#> 2 1 3 10 20 -6.943182 0.9734340 0.5 0.2417395
#> 3 2 3 20 20 -2.066142 1.0010950 1.0 0.4257371
se_param(Xk, dif = "perc", comparisons = "all.vs.first")
#> Alg1 Alg2 N1 N2 Phi SE r ropt
#> 1 1 2 10 20 -1.056358 0.1639697 0.5 1.167629
#> 2 1 3 10 20 -1.503881 0.2626191 0.5 0.605287
se_param(Xk, dif = "perc", comparisons = "all.vs.all")
#> Alg1 Alg2 N1 N2 Phi SE r ropt
#> 1 1 2 10 20 -0.5699530 0.0632245 0.5 0.5678141
#> 2 1 3 10 20 -0.8114117 0.1184975 0.5 0.2417395
#> 3 2 3 20 20 -0.2414587 0.1174082 1.0 0.4257371