Perform Adjusted Weighted Tchebycheff Scalarization for the MOEADr package.
scalarization_awt(Y, W, minP, eps = 1e-16, ...)
matrix of objective function values
matrix of weights.
numeric vector containing estimated ideal point
tolerance value for avoiding divisions by zero.
other parameters (included for compatibility with generic call)
Vector of scalarized performance values.
This routine calculates the scalarized performance values for the MOEA/D using the Adjusted Weighted Tchebycheff method.
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with
adaptive weight adjustment,” Evolutionary Computation, vol. 22,
no. 2, pp. 231–264, 2013.
R. Wang, T. Zhang, and B. Guo, “An enhanced MOEA/D using uniform
directions and a pre-organization procedure,” in IEEE Congress on
Evolutionary Computation, Cancun, Mexico, 2013, pp. 2390–2397.
F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A
Component-Based Framework for Multiobjective Evolutionary Algorithms Based on
Decomposition. Journal of Statistical Software doi:10.18637/jss.v092.i06
W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_awt(Y, W, minP)