Perform Weighted Sum Scalarization for the MOEADr package.
scalarization_ws(Y, W, minP, eps = 1e-16, ...)
matrix of objective function values
matrix of weights.
numeric vector containing estimated ideal point
tolerance value for avoiding divisions by zero.
other parameters (included for compatibility with generic call)
vector of scalarized performance values.
This routine calculates the scalarized performance values for the MOEA/D using the Weighted Sum method.
Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition", IEEE Trans. Evol. Comp. 11(6): 712-731, 2007.
H. Li, Q. Zhang, "Multiobjective Optimization Problems With Complicated
Pareto Sets, MOEA/D and NSGA-II", IEEE. Trans. Evol. Comp. 12(2):284-302,
2009.
F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A
Component-Based Framework for Multiobjective Evolutionary Algorithms Based on
Decomposition. Journal of Statistical Software doi:10.18637/jss.v092.i06
W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_ws(Y, W, minP)